Landauer Formula

Back

Landauer Formula

Use of scattering theory of transport as a conceptual framework for clarifying the meaning of electrical conductance and stressed its fundamental connection to the transmission function.

I = \frac{q}{h}\int_{-\infty}^{+\infty} dE\,T(E) [f_0(E-\mu_1)-f_0(E-\mu_2)] 

Fermi function:

f_0(E-\mu)=\frac{1}{1+e^{\frac{E-\mu}{k_BT}}} 

For \mu_1=\mu_2 , I=0 . Applying a small bias, \delta V :

\delta I = \frac{q}{h}\int_{-\infty}^{+\infty} dE\,\delta T(E) [f_0(E-\mu_1)-f_0(E-\mu_2)]

+\frac{q}{h}\int_{-\infty}^{+\infty} dE\, T(E) \delta[f_0(E-\mu_1)-f_0(E-\mu_2)] 

[f_0(E-\mu_1)-f_0(E-\mu_2)]=0 

\delta[f_0(E-\mu_1)-f_0(E-\mu_2)]=-\frac{\partial f_0}{\partial E}\delta E 

\delta E = q\delta V = \mu_1-\mu_2 

-\frac{\partial f_0}{\partial E}=(1+e^{\frac{E-\mu}{k_BT}})^{-2}e^{\frac{E-\mu}{k_BT}}\frac{1}{k_BT}=\frac{1}{k_BT}\frac{e^{\frac{E-\mu}{k_BT}}}{(1+e^{\frac{E-\mu}{k_BT}})^2} 

-\frac{\partial f_0}{\partial E}=\frac{1}{2k_BT}\frac{1}{1+\cosh(\frac{E-\mu}{k_BT})} 

\cosh(2x)=2\cosh^2(x)-1 

-\frac{\partial f_0}{\partial E}=\frac{1}{4k_BT} sech ^2\left(\frac{E-\mu}{2k_BT}\right) 

Thermal broadening function:

F_T(E-\mu)=\frac{1}{4k_BT} sech ^2\left(\frac{E-\mu}{2k_BT}\right) 

\delta I=\frac{q^2 \delta V}{h}\int_{-\infty}^{+\infty} dE\,T(E) F_T(E) 

G=\frac{I}{V}=\frac{q^2}{h}T_0 

T_0=\int_{-\infty}^{+\infty} dE\,T(E)F_T(E-\mu)