Lagrangian for a relativistic free particle

[mathjax]

The Lagrangian for a relativistic free particle is of the form $L(\vec{v}^2)$ due to the definition of an inertial frame.

We must also demand invariance under Lorentz transformations:

\begin{equation}
v’=\frac{v+V}{1+\frac{vV}{c^2}}
\end{equation}

Keeping to first order in $V$ and using $(1+x)^n \approx 1+nx, x \ll 1$:

\begin{equation}
v’^2=(v+V)^2\left(1+\frac{vV}{c^2}\right)^{-2}=(v^2+2vV+V^2)\left(1-\frac{2vV}{c^2}+…\right)=v^2+2vV\left(1-\frac{v^2}{c^2}\right)
\end{equation}

The new Lagrangian $L(v’^2)$ is given by:

\begin{equation}
L(v’^2)=L(v^2)+\frac{\partial L}{\partial (v^2)}2vV\left(1-\frac{v^2}{c^2}\right)
\end{equation}

Applying the Lorentz transformation for new time $t’$:

\begin{equation}
t'(x,t)=\frac{t-\frac{Vx}{c^2}}{\sqrt{1-\frac{V^2}{c^2}}}
\end{equation}
\begin{equation}
\frac{dt’}{dt}=\frac{\partial t’}{\partial x}\frac{dx}{dt}+\frac{\partial t’}{\partial t}=\left(-\frac{\gamma V}{c^2}\right)v+\gamma=\gamma\left(1-\frac{vV}{c^2}\right)=\frac{1-\frac{vV}{c^2}}{\sqrt{1-\frac{V^2}{c^2}}}
\end{equation}

Note that $\frac{dx}{dt}=v$. Keeping to first order in V:

\begin{equation}
\frac{dt’}{dt}=\left(1-\frac{vV}{c^2}\right)\left(1-\frac{V^2}{c^2}\right)^{-1/2}=1-\frac{vV}{c^2}
\end{equation}

The new action is given by:

\begin{equation}S’=\int L(v’^2)\,dt’=\int \left[L(v^2)+\frac{\partial L}{\partial (v^2)}2vV\left(1-\frac{v^2}{c^2}\right)\right]\left(1-\frac{vV}{c^2}\right)\,dt
\end{equation}

Keeping to first order in V:

\begin{equation}
S’=\int\left[L(v^2)\left(1-\frac{vV}{c^2}\right)+\frac{\partial L}{\partial (v^2)}2vV\left(1-\frac{v^2}{c^2}\right)\right]\,dt
\end{equation}

The change in the integrand of the action should be a total derivative:

\begin{equation}
\frac{\partial L}{\partial (v^2)}2vV\left(1-\frac{v^2}{c^2}\right)-L(v^2)\frac{vV}{c^2}=\frac{d}{dt}f(x,t)
\end{equation}

Factoring out $v=\frac{dx}{dt}$, this suggests setting the rest to a constant. Furthermore, the $1-\frac{v^2}{c^2}$ term needs to be cancelled out which indicates $C=0$.

\begin{equation}
\frac{\partial L}{\partial (v^2)}2V\left(1-\frac{v^2}{c^2}\right)-L(v^2)\frac{V}{c^2}=0
\end{equation}

Simplifying:

\begin{equation}
\frac{\partial L}{\partial (v^2)}\left(1-\frac{v^2}{c^2}\right)-\frac{L(v^2)}{2c^2}=0
\end{equation}

The only nontrivial solution is:

\begin{equation}
L(v^2)=C\sqrt{1-\frac{v^2}{c^2}}
\end{equation}

where C is a constant.

We can deduce what $C$ is because in the limit $v \ll c$, we should extract the Lagrangian for a nonrelativistic free particle.

\begin{equation}
L_r(v^2)=C\left(1-\frac{v^2}{c^2}\right)^{-1/2} \approx C\left(1-\frac{v^2}{2c^2}\right)=C-\frac{Cv^2}{2c^2}
\end{equation}

Ignoring the additive constant which doesn’t affect the motion and setting the right term equal to the nonrelativistic Lagrangian, we obtain:

\begin{equation}
-\frac{Cv^2}{2c^2}=L_{nr}(v^2)=\frac{1}{2}mv^2
\end{equation}
\begin{equation}
C=-mc^2
\end{equation}

Thus the form of $L(v^2)$ for a relativistic particle is given by:

\begin{equation}
L=-mc^2\sqrt{1-\frac{v^2}{c^2}}
\end{equation}

Join 235 other subscribers

F=ma Training Program

Group Format:
Enrollment open

Individual Format:
Enrollment full

1D elastic collision 1D inelastic collision 5 kinematics equations Angular kinematics Atwood machine Buoyant force Circular motion Circular orbits Conservation of angular momentum Conservation of energy Conservation of linear momentum Dimensional analysis Effective spring constant Elliptical orbits Energy dissipation Error propagation Fictitious forces Fma: Collisions Fma: Dynamics Fma: Energy Fma: Fluids Fma: Gravity Fma: Kinematics Fma: Oscillatory Motion Fma: Other Fma: Rigid Bodies Fma: System of Masses Forces in mechanics Free fall Inclined plane Kinetic energy Limiting cases Mass-spring system Moments of inertia Motion graphs Newton's laws Power Projectile motion Relative velocity Rolling motion Simple harmonic motion Statics Torque Torque from weight Work-energy theorem

Discover more from Kevin S. Huang

Subscribe now to keep reading and get access to the full archive.

Continue reading