2021 F=ma Exam: Problem 24

Kevin S. Huang

To meet the second satellite in time $T / 2$, the first satellite should have new period $T^{\prime}=T / 2$. By Kepler's 3rd law,

$$
\begin{gathered}
\frac{T^{\prime 2}}{T^{2}}=\frac{a^{3}}{r^{3}} \\
a^{3}=r^{3} / 4 \\
a=\frac{r}{4^{1 / 3}}
\end{gathered}
$$

Recall the energy of an orbit is given by

$$
E=-\frac{G M m}{2 a}
$$

so the first satellite should adjust its velocity to

$$
\begin{aligned}
& \frac{1}{2} m v^{\prime 2}-\frac{G M m}{r}=-\frac{G M m}{2 a} \\
& \frac{1}{2} m v^{\prime 2}=\frac{G M m}{r}-\frac{G M m}{2^{1 / 3} r}
\end{aligned}
$$

$$
v^{\prime}=\sqrt{\frac{2 G M}{r}\left(1-\frac{1}{2^{1 / 3}}\right)}
$$

For a circular orbit, recall

$$
v=\sqrt{\frac{G M}{r}}
$$

so

$$
v^{\prime}=\sqrt{2-2^{2 / 3}} v=0.64 v
$$

Thus, the answer is B.

