

2020B F=ma Exam: Problem 17

Kevin S. Huang

For m to rebound to its original height, we know its velocity flips after the elastic collision. Since energy is conserved, we know M has the same speed as before. Furthermore, from conservation of momentum, its velocity also flips. Thus,

$$p = mv_1 - Mv_2 = 0$$

From conservation of energy for m ,

$$\begin{aligned} mgh &= \frac{1}{2}mv_1^2 \\ v_1 &= \sqrt{2gh} \end{aligned}$$

From conservation of energy for M ,

$$\begin{aligned} \frac{1}{2}k\Delta x^2 &= \frac{1}{2}Mv_2^2 \\ v_2 &= \Delta x \sqrt{\frac{k}{M}} \end{aligned}$$

Substituting into the earlier equation,

$$\begin{aligned} m\sqrt{2gh} &= M\Delta x \sqrt{\frac{k}{M}} \\ \Delta x &= \frac{m}{M} \sqrt{\frac{2Mgh}{k}} \end{aligned}$$

From the last problem,

$$h = \frac{\pi^2 Mg}{8k}$$

Thus,

$$\Delta x = \frac{m}{M} \sqrt{\frac{2\pi^2 M^2 g^2}{8k^2}} = \frac{m}{M} \frac{\pi Mg}{2k} = \frac{\pi mg}{2k}$$

so the answer is E.