2016 F=ma Exam: Problem 23

Kevin S. Huang

We analyze a small piece of the rubber band with mass $d M$ that subtends an angle $d \theta$. The spring forces T on its ends provide the centripetal acceleration. We have

$$
2 T \sin \left(\frac{d \theta}{2}\right)=d M \omega^{2} R^{\prime}
$$

Using the small-angle approximation $\sin \theta \approx \theta$,

$$
\begin{gathered}
T d \theta=d M \omega^{2} R^{\prime} \\
T=\frac{d M}{d \theta} \omega^{2} R^{\prime}
\end{gathered}
$$

Since the rubber band has uniform density,

$$
\begin{gathered}
\frac{d M}{d \theta}=\frac{M}{2 \pi} \\
T=\frac{M \omega^{2} R^{\prime}}{2 \pi}
\end{gathered}
$$

The change in length of the spring is

$$
\Delta L=2 \pi R^{\prime}-2 \pi R
$$

so the tension is

$$
T=k \Delta L=2 \pi k\left(R^{\prime}-R\right)
$$

Substituting this into the other equation,

$$
\begin{gathered}
2 \pi k R^{\prime}-2 \pi k R=\frac{M \omega^{2} R^{\prime}}{2 \pi} \\
4 \pi^{2} k R^{\prime}-M \omega^{2} R^{\prime}=4 \pi^{2} k R \\
R^{\prime}=\frac{4 \pi^{2} k R}{4 \pi^{2} k-M \omega^{2}}
\end{gathered}
$$

so the answer is D .

