


# 2016 F=ma Exam: Problem 18

Kevin S. Huang



Let  $t_1$  be the time it takes the object to accelerate with  $\alpha$  to  $\omega_0$  from rest. Let  $t_2$  be the time the object stays rotating at  $\omega_0$ . Then the time it takes the object to go back to rest is also  $t_1$  since it is decelerating at  $-\alpha$  (same magnitude as before). To find  $t_1$ , we have

$$\begin{aligned}\omega_0 &= \alpha t_1 \\ t_1 &= \frac{\omega_0}{\alpha} = \frac{\pi/15}{\pi/75} \text{ s} = 5 \text{ s}\end{aligned}$$

To find  $t_2$ , we calculate the total angular displacement  $\theta_{\text{tot}} = 3(2\pi) = 6\pi$  in terms of  $t_2$ . Recall one of our kinematics equations for constant acceleration,

$$\theta = \omega_i t + \frac{1}{2}\alpha t^2$$

where  $\omega_i$  is the initial angular velocity. During the first  $t_1$  of time, we have

$$\theta_1 = \frac{1}{2}\alpha t_1^2$$

In the next  $t_2$  of time,

$$\theta_2 = \omega_0 t_2$$

In the last  $t_1$  of time,

$$\theta_3 = \omega_0 t_1 - \frac{1}{2} \alpha t_1^2$$

Thus,

$$\begin{aligned}\theta_{\text{tot}} &= \theta_1 + \theta_2 + \theta_3 = \omega_0(t_1 + t_2) \\ t_2 &= \frac{\theta_{\text{tot}}}{\omega_0} - t_1 = \frac{6\pi}{\pi/15} \text{ s} - 5 \text{ s} = 85 \text{ s}\end{aligned}$$

The total time  $T$  taken is

$$T = 2t_1 + t_2 = 2(5 \text{ s}) + 85 \text{ s} = 95 \text{ s}$$

so the answer is E.