


# 2016 F=ma Exam: Problem 14

Kevin S. Huang

We first find the original oscillation frequency  $f$ .



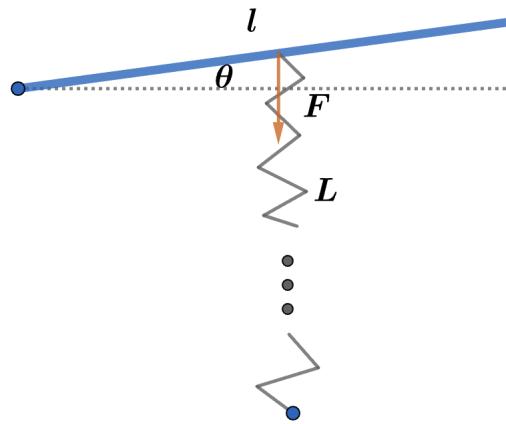
If we displace the rod by a small angle  $\theta$ , then the spring gets stretched by  $x = l\theta$ . The spring force  $F$  is

$$F = -kx = -kl\theta$$

and the corresponding torque  $\tau$  is

$$\tau = Fl = -kl^2\theta$$

where we used the small angle approximation  $\cos \theta \approx 1$  and the fact that  $L \gg l$  to assume the spring force acts downward. Applying Newton's 2nd law  $\tau = I\alpha$ ,


$$\begin{aligned} -kl^2\theta &= I\ddot{\theta} \\ \ddot{\theta} &= -\frac{kl^2}{I}\theta \end{aligned}$$

This is of simple harmonic form ( $\ddot{z} = -\omega^2 z$ ) so we can identify the angular frequency as

$$\omega = \sqrt{\frac{kl^2}{I}}$$

Then the frequency  $f$  is

$$f = \frac{\omega}{2\pi} = \frac{l}{2\pi} \sqrt{\frac{k}{I}}$$



If the spring is moved to the midpoint of the rod, then the moment arm  $l$  is halved to  $l' = l/2$  for the force and torque calculation. The moment of inertia  $I$  is unchanged since the rod is still rotating around the same point. Because we found  $f \propto l$ , we have

$$f' = f/2$$

so the answer is A.