

2013 F=ma Exam: Problem 15

Kevin S. Huang

We choose the hinge as our pivot point and balance torques on the rod. Only the weight of the rod and the buoyant force contribute to the torque. The weight W acts downward at the CM of the rod, distance $l/2$ away from the pivot. The buoyant force F_B acts upward at the CM of the underwater portion. If f is the fraction of the rod above water, then F_B acts at a distance

$$d = fl + \frac{(1-f)l}{2} = \frac{(1+f)l}{2}$$

away from the pivot. Balancing torques,

$$\begin{aligned} W \left(\frac{l}{2} \cos \theta \right) &= F_B \left[\frac{(1+f)l}{2} \cos \theta \right] \\ W &= F_B(1+f) \end{aligned}$$

The weight is given by

$$W = m_{\text{rod}}g = \rho_{\text{rod}}Alg$$

where A is the cross-sectional area of the rod. By Archimedes' principle,

$$F_B = \rho_{\text{water}}V_{\text{sub}}g = \rho_{\text{water}}A(1-f)lg$$

Substituting into the earlier equation,

$$\rho_{\text{rod}} A l g = \rho_{\text{water}} A (1 - f) l g (1 + f)$$

$$\rho_{\text{rod}} = \rho_{\text{water}} (1 - f^2)$$

Since $\rho_{\text{rod}} = \frac{5}{9} \rho_{\text{water}}$,

$$\frac{5}{9} = 1 - f^2$$

Solving for f ,

$$f^2 = \frac{4}{9}$$

$$f = \frac{2}{3}$$

so the answer is D.