

2012 F=ma Exam: Problem 19

Kevin S. Huang

The motor has to supply a force F on the water in the pipe that balances its weight W since the water is moving at constant speed. Because the pipe is a cylinder, the mass of the water is

$$M = \rho V = \rho(\pi r^2 h)$$

Then

$$F = W = Mg = \pi \rho r^2 h g$$

The power required to pump the water at velocity v is given by

$$P = Fv = \pi \rho r^2 h g v$$

so the radius of the pipe is

$$r = \sqrt{\frac{P}{\pi \rho h g v}} = \sqrt{\frac{1500 \text{ W}}{\pi (1000 \text{ kg/m}^3)(2 \text{ m})(10 \text{ m/s}^2)(2.5 \text{ m/s})}} = 10 \text{ cm}$$

Thus, the answer is D.