
## 2012 F=ma Exam: Problem 13

## Kevin S. Huang

The cart initially starts with speed  $v_0$  in the negative direction under the influence of a positive force, so negative work  $-W_0$  is done on it until it comes to rest. Then the cart reverses direction and has positive work  $W_0$  done on it when it returns to the starting point. No net work is done so the cart has the same starting speed  $v_0$  in the positive direction.



The maximum speed of the cart is obtained when the maximum positive work is done on it. Since work done is given by the signed area in a F-x plot, we see from the graph that this occurs at x = 6 m with W = 17.5 J. By the work energy theorem,

$$\frac{1}{2}mv_f^2 = W + \frac{1}{2}mv_0^2$$

$$v_f = \sqrt{\frac{2W}{m} + v_0^2} = \sqrt{\frac{2(17.5 \text{ J})}{4 \text{ kg}} + (3 \text{ m/s})^2} = 4.2 \text{ m/s}$$

so the answer is E