Propagation of Errors-Basic Rules

See Chapter 3 in Taylor, An Introduction to Error Analysis.

1. If x and y have independent random errors δx and δy, then the error in $z=x+y$ is

$$
\delta z=\sqrt{\delta x^{2}+\delta y^{2}} .
$$

2. If x and y have independent random errors δx and δy, then the error in $z=x \times y$ is

$$
\frac{\delta z}{z}=\sqrt{\left(\frac{\delta x}{x}\right)^{2}+\left(\frac{\delta y}{y}\right)^{2}} .
$$

3. If $z=f(x)$ for some function $f()$, then

$$
\delta z=\left|f^{\prime}(x)\right| \delta x
$$

We will justify rule 1 later. The justification is easy as soon as we decide on a mathematical definition of δx, etc.

Rule 2 follows from rule 1 by taking logarithms:

$$
\begin{aligned}
z & =x \times y \\
\log z & =\log x+\log y \\
\delta \log z & =\sqrt{(\delta \log x)^{2}+(\delta \log y)^{2}} \\
\frac{\delta z}{z} & =\sqrt{\left(\frac{\delta x}{x}\right)^{2}+\left(\frac{\delta y}{y}\right)^{2}}
\end{aligned}
$$

where we used

$$
\delta \log X=\frac{\delta X}{X}
$$

the calculus formula for the derivative of the logarithm.

Rule 3 is just the definition of derivative of a function f.

Quick Check 3.4

Problem: To find the volume of a certain cube, you measure its side as $2.00 \pm 0.02 \mathrm{~cm}$. Convert this uncertainty to a percent and then find the volume with its uncertainty.

Solution: The volume V is given in terms of the side s by

$$
V=s^{3}
$$

so the uncertainty in the volume is, by rule 3 ,

$$
\delta V=3 s^{2} \delta s=0.24
$$

and the volume is $8.0 \pm 0.2 \mathrm{~cm}^{3}$.

Quick Check 3.8

Problem: If you measure x as 100 ± 6, what should you report for \sqrt{x}, with its uncertainty?

Solution: Use rule 3 with $f(x)=\sqrt{x}$, $f^{\prime}(x)=1 /(2 \sqrt{x})$, so the uncertainty in \sqrt{x} is

$$
\frac{\delta x}{2 \sqrt{x}}=\frac{6}{2 \times 10}=0.3
$$

and we would report $\sqrt{x}=10.0 \pm 0.3$.
We cannot solve this problem by indirect use of rule 2. You might have thought of using $x=\sqrt{x} \times \sqrt{x}$, so

$$
\frac{\delta x}{x}=\sqrt{2} \frac{\delta \sqrt{x}}{\sqrt{x}}
$$

and

$$
\delta \sqrt{x}=\frac{\delta x}{\sqrt{2 x}}
$$

which leads to $\sqrt{x}=10 \pm 0.4$. The fallacy here is that the two factors \sqrt{x} have the same errors, and the addition in quadrature rule requires that the various errors be independent.

Quick Check 3.9

Problem: Suppose you measure three numbers as follows:

$$
x=200 \pm 2, \quad y=50 \pm 2, \quad z=40 \pm 2
$$

where the three uncertainties are independent and random. Use step-by-step propagation to find the quantity $q=x /(y-z)$ with its uncertainty.

Solution: Let $D=y-z=10 \pm 2 \sqrt{2}=10 \pm 3$. Then

$$
q=\frac{x}{D}=20 \pm 20 \sqrt{0.01^{2}+0.3^{2}}=20 \pm 6
$$

General Formula for Error Propagation

We measure $x_{1}, x_{2} \ldots x_{n}$ with uncertainties $\delta x_{1}, \delta x_{2} \ldots \delta x_{n}$. The purpose of these measurements is to determine q, which is a function of x_{1}, \ldots, x_{n} :

$$
q=f\left(x_{1}, \ldots, x_{n}\right)
$$

The uncertainty in q is then

$$
\delta q=\sqrt{\left(\frac{\partial q}{\partial x_{1}} \delta x_{1}\right)^{2}+\ldots+\left(\frac{\partial q}{\partial x_{n}} \delta x_{n}\right)^{2}}
$$

If

$$
q=x_{1}+x_{2}
$$

we recover rule 1 :

$$
\begin{aligned}
\frac{\partial q}{\partial x_{1}} & =1 \\
\frac{\partial q}{\partial x_{2}} & =1 \\
\delta q & =\sqrt{\delta x_{1}^{2}+\delta x_{2}^{2}}
\end{aligned}
$$

If

$$
q=x_{1} \times x_{2}
$$

we recover rule 2 :

$$
\begin{aligned}
\frac{\partial q}{\partial x_{1}} & =x_{2} \\
\frac{\partial q}{\partial x_{2}} & =x_{1} \\
\delta q & =\sqrt{x_{2}^{2} \delta x_{1}^{2}+x_{1}^{2} \delta x_{2}^{2}} \\
& =\sqrt{q^{2}\left[\left(\frac{\delta x_{1}}{x_{1}}\right)^{2}+\left(\frac{\delta x_{2}}{x_{2}}\right)^{2}\right]} \\
\frac{\delta q}{q} & =\sqrt{\left(\frac{\delta x_{1}}{x_{1}}\right)^{2}+\left(\frac{\delta x_{2}}{x_{2}}\right)^{2}}
\end{aligned}
$$

Problem 3.47

The Atwood machine consists of two masses M and m (with $M>m$) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass M is easily shown to accelerate down with an acceleration

$$
a=g \frac{M-m}{M+m}
$$

Suppose that M and m are measured as $M=100 \pm 1$ and $m=50 \pm 1$, both in grams. Find the uncertainty δa.

Solution: The partial derivatives are

$$
\begin{aligned}
\frac{\partial a}{\partial M} & =g \frac{(M+m)-(M-m)}{(M+m)^{2}} \\
& =\frac{2 m g}{(M+m)^{2}} \\
\frac{\partial a}{\partial m} & =g \frac{-(M+m)-(M-m)}{(M+m)^{2}} \\
& =-\frac{2 M g}{(M+m)^{2}}
\end{aligned}
$$

so we have

$$
\delta a=\frac{2 g}{(M+m)^{2}} \sqrt{m^{2} \delta M^{2}+M^{2} \delta m^{2}} .
$$

Now put the numbers in to get

$$
a=\frac{9.8 \times 50}{150}=3.27 \mathrm{~m} / \mathrm{s}^{2}
$$

and

$$
\delta a=\frac{2 \times 9.8}{150^{2}} \sqrt{50^{2}+100^{2}}=0.097
$$

so our answer is

$$
a=3.3 \pm 0.1 \mathrm{~m} / \mathrm{s}^{2}
$$

Problem 3.49

If an object is placed at a distance p from a lens and an image is formed at a distance q from the lens, the lens's focal length can be found as

$$
\begin{equation*}
f=\frac{p q}{p+q} \tag{1}
\end{equation*}
$$

(a) Use the general rule to derive a formula for the uncertainty δf in terms of p, q, and their uncertainties.
(b) Starting from (1) directly, you cannot find δf in steps because p and q both appear in numerator and denominator. Show, however, that f can be rewritten
as

$$
f=\frac{1}{(1 / p)+(1 / q)}
$$

Starting from this form, you can evaluate δf in steps. Do so, and verify that you get the same answer as in part (a).

Solution:

(a) The partial derivatives are

$$
\begin{aligned}
\frac{\partial f}{\partial p} & =\frac{q(p+q)-p q}{(p+q)^{2}}=\frac{q^{2}}{(p+q)^{2}} \\
\frac{\partial f}{\partial q} & =\frac{p(p+q)-p q}{(p+q)^{2}}=\frac{p^{2}}{(p+q)^{2}}
\end{aligned}
$$

Therefore

$$
\delta f=\frac{\sqrt{q^{4} \delta p^{2}+p^{4} \delta q^{2}}}{(p+q)^{2}}
$$

(b) The uncertainty in $1 / p$ is $\delta p / p^{2}$, and the uncertainty in $1 / q$ is $\delta q / q^{2}$. The uncertainty in

$$
\frac{1}{p}+\frac{1}{q}
$$

is

$$
\sqrt{\left(\frac{\delta p}{p^{2}}\right)^{2}+\left(\frac{\delta q}{q^{2}}\right)^{2}}
$$

which is a relative uncertainty of

$$
\frac{1}{\frac{1}{p}+\frac{1}{q}} \sqrt{\left(\frac{\delta p}{p^{2}}\right)^{2}+\left(\frac{\delta q}{q^{2}}\right)^{2}}
$$

The relative uncertainty in f, as given by
(1), is the same, so the absolute uncertainty
in f is

$$
\begin{aligned}
\delta f & =f^{2} \sqrt{\left(\frac{\delta p}{p^{2}}\right)^{2}+\left(\frac{\delta q}{q^{2}}\right)^{2}} \\
& =\frac{1}{(p+q)^{2}} \sqrt{q^{4} \delta p^{2}+p^{4} \delta q^{2}}
\end{aligned}
$$

exactly as in part (a).

Problem 3.50

Suppose that you measure three independent variables as

$$
x=10 \pm 2, \quad y=7 \pm 1, \quad \theta=40 \pm 3^{\circ}
$$

and use these values to compute

$$
\begin{equation*}
q=\frac{x+2}{x+y \cos 4 \theta} \tag{2}
\end{equation*}
$$

What should be your answer for q and its uncertainty?

Solution: Find the partial derivatives, using θ in radians:

$$
\frac{\partial q}{\partial x}=\frac{x+y \cos 4 \theta-(x+2)}{(x+y \cos 4 \theta)^{2}}
$$

$$
\begin{aligned}
& =\frac{y \cos 4 \theta-2}{(x+y \cos 4 \theta)^{2}}=-0.732 \\
\frac{\partial q}{\partial y} & =-\frac{(x+2) \cos 4 \theta}{(x+y \cos 4 \theta)^{2}}=0.963 \\
\frac{\partial q}{\partial \theta} & =\frac{4(x+2) y \sin 4 \theta}{(x+y \cos 4 \theta)^{2}}=9.813
\end{aligned}
$$

So we have $q=3.507$ and

$$
\begin{aligned}
\delta q^{2}= & (0.732 \times 2)^{2} \\
& +(0.963 \times 1)^{2} \\
& +(9.813 \times 3 \times \pi / 180)^{2} \\
= & 3.3
\end{aligned}
$$

Our answer is $q=3.5 \pm 2$.

Alternate Solution

Rewrite (2) in the form

$$
\frac{1}{q}=1+\frac{y \cos 4 \theta-2}{x+2} .
$$

We can find the uncertainty in $1 / q$, and therefore in q by the simple step-by-step procedure.

1. The relative uncertainty in $y \cos 4 \theta$ is

$$
\Delta_{1}=\sqrt{\left(\frac{\delta y}{y}\right)^{2}+\left(\frac{4 \delta \theta \sin 4 \theta}{\cos 4 \theta}\right)^{2}}=0.16
$$

2. The absolute uncertainty in $y \cos 4 \theta$ is

$$
\Delta_{2}=|y \cos 4 \theta| \times \Delta_{1}=1.1
$$

3. The relative uncertainty in $1 / q-1$ is

$$
\begin{aligned}
\Delta_{3} & =\sqrt{\left(\frac{\Delta_{2}}{y \cos 4 \theta-2}\right)^{2}+\left(\frac{\delta x}{x+2}\right)^{2}} \\
& =0.21
\end{aligned}
$$

4. The absolute uncertainty in $1 / q-1$ is

$$
\Delta_{4}=|1 / q-1| \times \Delta_{3}=0.15
$$

which is also the absolute uncertainty in $1 / q$.
5. The relative uncertainty in $1 / q$ is $q \times \Delta_{4}$, which is also the relative uncertainty in q. Therefore the absolute uncertainty in q is

$$
\delta q=q^{2} \times \Delta_{4}=2
$$

