
STATEMENT	OF	PROBLEM:	The	fundamental	scientific	problem	this	project	will	address	is	that	of	the	
joint	measurement	of	trapped	electronic	spins	via	ballistic	electrons	in	a	nearby	conductance	channel.		
A	joint	measurement	is	a	measurement	of	a	two-spin	or	multi-spin	operator	that	does	not	reveal	the	
individual	state	of	each	spin.		Joint	measurements	are	of	fundamental	significance	in	quantum	
information	processing.		A	procedure	that	acts	as	a	joint	measurement	can	be	used	to	facilitate	
entanglement	or	the	fault-tolerant	encoding	of	information	into	multiple	physical	qubits.	
	
OVERVIEW:	Recent	advances	in	the	fabrication	and	tenability	of	high-quality	semiconductor	
heterostructures	have	allowed	the	experimental	observation	of	various	types	of	electronic	spin	qubits	
[1-5].		These	systems	are	envisioned	as	being	useful	for	the	construction	of	a	quantum	computer,	but	
are	also	interesting	on	a	fundamental	level.		Even	systems	of	only	a	few	spins	will	provide	a	fascinating	
window	into	the	emergence	of	many-body	entanglement.		However,	the	means	of	entangling	the	spins	
is	currently	limited	to	either	superexchange	via	direct	tunnel	coupling,	which	is	extremely	short	ranged	
and	requires	dense,	tunable,	technically	challenging	gate	arrays,	or	Coulomb	interaction,	which	is	weak	
and	susceptible	to	noise	at	long	distance.		Likewise,	measurements	are	limited	to	single-spin	probes,	
proceeding	via	tunnel	coupling	to	a	reservoir	or	capacitive	coupling	to	a	quantum	point	contact.		This	
project	seeks	to	open	an	entirely	new	direction	in	the	field	by	theoretically	exploring	the	idea	of	
performing	a	joint	
measurement	on	an	array	of	
spatially	separated	spins	by	
measuring	the	current	in	one	or	
more	proximal	conductance	
channels	coupled	to	the	spins.		
(The	coupling	employs	a	
momentary	“spin-to-charge”	
conversion,	essentially	just	
using	Pauli	blocking,	similar	to	
how	“singlet-triplet”	qubits	are	
already	coupled	to	a	quantum	
point	contact	for	readout	[1].)		
Such	joint	measurements	can	
be	used	to	entangle	non-
interacting	spins	and	furthermore	
form	the	building	blocks	of	fault-
tolerant	error	correction	
proposals,	but	are	not	currently	
experimentally	accessible	in	solid	
state	spin	qubit	systems.	

The	central	idea	here	is	sketched	in	Figure	1	and	the	recipe	is	very	simple:		
Two	unequal	reservoirs.	These	are	taken	to	be	two	disconnected	regions	of	a	two-dimensional	

electron	gas	(2DEG)	residing	near	the	interface	of	a	semiconductor	heterostructure.		They	have	
different	Fermi	energies,	controlled	via	voltage	leads,	so	as	to	permit	net	charge	transport.	

One	conductance	channel.	This	is	taken	to	be	a	quasi-one-dimensional	constriction	in	the	
background	2DEG,	connecting	the	two	reservoirs.		Alternatively,	a	tunnel-coupled	nanowire	may	be	
used.	

Two	spin	qubits.	(Add	more	as	desired.)	A	quantum	dot	contains	a	single	electron,	whose	spin	
projection	forms	the	qubit.		To	allow	selective	electrostatic	coupling	to	the	spin	qubit,	add	gated	tunnel	
coupling	to	another	dot	whose	energy	levels	are	Zeeman	split	so	as	to	allow	spin-selective	tunneling.		

Figure 1: Double-quantum-dot charge qubits capacitively 
coupled to a conductance channel create a scattering 
potential that depends on the joint state of the qubits. Open 
(shaded) circles here represent empty (charged) dots, but 
Pauli blocking can be used to translate the idea to spin 
qubits. 



Alternatively,	and	even	better	for	other	reasons,	one	may	use	a	singlet-triplet	qubit	formed	by	two	
electrons	in	a	double	quantum	dot	with	tunable	bias.		In	any	event,	the	result	is	that	upon	adjusting	a	
tunnel	barrier	or	bias	voltage,	the	charge	density	shifts	in	a	spin-dependent	way	so	that	information	is	
temporarily	stored	in	the	charge	configuration	rather	than	isolated	in	the	spin	degree	of	freedom.		In	
fact,	if	decoherence	times	were	not	a	concern,	one	could	simply	substitute	charge	qubits.		The	
proposed	research	will	be	undertaken	with	singlet-triplet	qubits	in	mind,	but	it	could	easily	be	adapted	
for	other	types	of	qubits.	

Combining	these	ingredients	together,	the	electrostatic	couplings	between	the	qubits	and	the	
conductance	channel	create	a	multi-barrier	scattering	potential	for	the	transport	electrons	that	
depends	on	the	spin	states	of	the	trapped	electrons.		Thus,	there	is	a	set	of	transmission	resonances	
that	depend	on	the	joint	state	of	all	of	the	trapped	spins.		For	example,	in	the	simplest	case	of	two	spins	
and	transport	electrons	incident	at	a	given	energy	onto	the	resulting	double-barrier	potential,	there	is	a	
resonant	symmetric	barrier	height	such	that	the	transmission	is	100%.		By	tuning	the	couplings	(via	the	
voltage	gates)	such	that	a	barrier	is	zero	if	its	corresponding	spin	is	down,	and	at	the	resonant	height	if	
its	corresponding	spin	is	up,	a	measurement	of	conductance	will	give	only	0	or	1,	although	there	are	
four	possible	total	spin	states.		The	measurement	only	indicates	whether	or	not	the	spins	are	aligned,	
without	distinguishing	between	whether	they	are	both	up	or	both	down.	It	does	not	collapse	the	
wavefunction	within	a	given	parity	subspace.	
	
BACKGROUND:		We	have	seen	that,	in	principle,	one	can	use	a	resonant	tunneling	scheme	to	perform	a	
joint	measurement	on	the	spins	via	conductance.		This	ability,	along	with	an	ancilla	spin,	can	be	used	to	
entangle	spatially	separated	spins,	an	idea	that	is	familiar	in	the	linear	optics	community	from	the	Knill-
Laflamme-Milburn	proposal	[6].	This	is	remarkable	since	the	spins	need	not	interact	with	each	other	at	
all	–	joint	measurement	provides	the	nonlinearity.		Previous	attempts	to	exploit	this	property	in	
quantum	dots	required	coupling	charges	to	a	single	quantum	point	contact	[7,8]	or	ancilla	[9],	requiring	
the	dots	to	be	very	close	to	each	other,	in	which	case	one	could	also	presumably	use	direct	coupling.		In	
the	current	proposal,	by	exploiting	the	nonzero	phase	coherence	length	and	quantum	mechanical	
tunneling	resonances	of	the	transport	electrons,	one	can	consider	small	systems	of	spins	separated	by	
several	microns.		

Furthermore,	and	perhaps	even	more	interestingly,	the	backbone	of	quantum	error	correction	
is	the	parity	measurement,	with	the	four-qubit	joint	measurement	being	of	particular	interest	for	
Kitaev’s	toric	code	[10],	Steane’s	7-qubit	code	[11],	and	the	perfect	five-qubit	code	[12,	13].		These	joint	
measurements	are	typically	imagined	as	being	performed	by	a	series	of	two-qubit	operations	between	
data	qubits	and	ancillas,	but	the	direct	approach	proposed	here	would	eliminate	that	laborious	process	
and	perform	the	joint	measurement	in	a	single-shot,	in	addition	to	relaxing	the	usual	physical	condition	
that	ancillas	and	data	qubits	be	in	close	proximity.	

Both	resonant	tunneling	and	measurement-based	quantum	information	processing	are	well-
established	ideas	that	have	been	studied	extensively.		However,	to	my	knowledge	neither	has	ever	
been	placed	in	the	context	of	the	other.		This	combination	of	simple	ideas	immediately	raises	
interesting	and	fundamental	theoretical	questions	and	lends	itself	to	several	extensions.		For	example,	
what	is	the	practical	limit	on	detection	efficiency?		Is	it	possible	to	generalize	the	arrangement	so	that	
the	conductance	measurement	performs	a	projection	onto	the	even/odd	parity	subspaces	of	an	N-spin	
system?		(Under	the	simplest	set	of	assumptions,	the	answer	is	yes,	as	we	will	show	in	the	Preliminary	
Results	section.)		What	kind	of	decreases	in	algorithmic	complexity	could	this	ability	facilitate?		The	
results	will	have	immediate	applications	in	quantum	information	as	well	as	fundamental	studies	of	
many-body	entanglement,	and	this	idea	could	prove	to	be	a	great	advance.	However,	the	devil	is	in	the	
details	–	which	is	fortunate,	because	it	gives	us	something	to	calculate!		There	are	many	details	
requiring	careful	consideration	that	are	actually	very	interesting	in	their	own	right.		For	instance,	the	



result	of	various	imperfections	will	be	to	introduce	some	amount	of	welcher-weg	information,	allowing	
one	to	begin	to	distinguish	between	individual	states	within	the	specified	parity	subspace	and	causing	
the	joint	measurement	(or	“syndrome,”	in	the	language	of	quantum	error	correction)	to	gradually	
transition	into	a	mere	measurement	of	the	individual	spins.		Such	details	form	the	substance	of	the	
research	plan	of	this	proposal,	discussed	below.		The	detailed	study	proposed	here	must	first	be	
performed	before	this	type	of	joint	measurements	can	actually	be	implemented	in	experiment.			
	
RESEARCH	OBJECTIVES:		

1)	Calculate	the	requirements	in	principle	for	current	measurements	to	distinguish	between	
two	or	more	subspaces	of	the	multi-spin	system	without	resolving	the	individual	states.		This	involves	
modeling	the	potential,	accounting	for	the	width	of	the	resonance,	the	energy	spread	of	the	injected	
electrons,	the	number	of	incident	electrons	per	pulse,	etc.		

2)	Calculate	the	sensitivity	of	the	joint	measurement	to	realistic	imperfections.		This	involves	
considering	the	effects	of	imprecise	gate	voltages,	background	1/f	charge	noise,	decoherence	during	
measurement,	etc.		

3)	Consider	the	capabilities	of	multi-qubit	joint	measurements	more	generally.		Outside	the	
specific	physical	context,	while	it	is	well	known	how	to	maximally	entangle	pairwise	by	using	two-qubit	
joint	measurements	and	ancillas,	it	will	be	interesting	to	consider	how	to	efficiently	create	highly	
entangled	multi-qubit	states	when	one	has	direct	access	to	multi-qubit	joint	measurements.	
	
PLAN	OF	PROCEDURE:		The	approach	is	to	begin	with	transfer	matrix	calculations	for	a	1D	model	
scattering	potential	[14].		This	is	extremely	straightforward,	and	some	preliminary	results	are	given	
below	for	the	simplest	possible	model	of	symmetric	square	barriers.		This	heuristic	approach	will	give	
qualitative	insight,	but	the	plane	wave	eigenstates	of	the	constant	potentials	should	actually	be	
replaced	by	Airy	functions	for	a	linear	potential	in	the	presence	of	a	symmetry-breaking	voltage	bias	
across	the	channel	[15]	and	the	current	obtained	using	the	Tsu-Esaki	formula	[16].	The	next	step	is	to	
use	a	realistic	model	formed	by	numerical	solution	of	Poisson’s	equation	in	a	gated	semiconductor	
heterostructure	geometry.		The	one-dimensional	approximation	must	also	be	justified,	and	if	more	than	
one	channel	is	open	in	the	physically	realistic	system,	then	that	will	also	have	to	be	accounted	for.		A	
final	level	of	refinement	will	be	to	use	a	coupled	Poisson-Schrodinger	solver	to	obtain	the	potential	as	a	
function	of	gate	voltages	and	spin	state.		This	will	include	the	effects	of	gate	geometry	through	
rudimentary	COMSOL	device	modelling.	

The	important	questions	to	address	in	this	context	is	what	the	conditions	on	the	inter-qubit	
distances,	barrier	heights,	and	incident	energies	are	in	order	to	allow	good	distinguishability	in	
conductance	between	even	and	odd	parity	states	without	distinguishing	between	individual	states	in	
the	subspace.		Also,	the	effects	of	disorder	will	be	analyzed.		Static	disorder	in	the	barriers	may	be	
calibrated	away,	but	for	higher-frequency	components	of	noise	it	will	be	useful	to	find	regions	of	
parameter	space	that	offer	natural	protection	against	fluctuations.		It	may	also	become	important	to	
take	into	account	the	transient	behavior	of	the	system	via	a	numerical	solution	for	the	time-
dependence	of	the	transport	[17].			

Another	important	question	is	that	of	decoherence	during	the	measurement.		First	of	all,	one	
must	consider	the	decoherence	of	the	qubits	since	the	temporary	partial	transfer	of	information	from	
spin	into	charge	in	order	to	couple	to	the	transport	channel	also	makes	the	qubit	temporarily	
vulnerable	to	dephasing	charge	noise.		There	are	a	couple	of	ways	to	address	this.		One	is	to	consider	
the	case	of	extremely	short	distance	between	the	qubit	and	the	transport	channel	so	that	the	coupling	
to	the	channel	is	much	larger	than	the	typical	coupling	to	noise.		In	that	case	one	can	simply	tilt	the	
double-dot	potential	only	slightly	so	that	very	little	charge	density	is	shuttled,	with	correspondingly	
small	spin-dependent	charge	dipole	to	allow	decoherence	while	still	producing	a	transport	channel	



potential	barrier	of	sufficient	height.	Note	that	this	is	the	basic	approach	already	demonstrated	for	
direct	capacitive	coupling	of	two	qubits	[18].		Another	way	to	address	decoherence	would	be	to	
consider	a	pulse	sequence	for	the	double-dot	tilt	such	that	the	entire	operation	carries	out	a	dynamical	
decoupled	evolution.		I	have	expertise	with	this	sort	of	approach	in	recent	years	(see,	e.g.,	Refs	[19-21]),	
and	early	experimental	implementation	has	been	successful	[22].		Secondly,	one	must	consider	the	
onset	of	dephasing	of	the	transport	electrons	when	one	begins	to	consider	larger	inter-qubit	distances	
or	multi-qubit	parity	checks.		These	considerations	will	show	the	boundaries	on	the	application	of	this	
scheme.	

Anticipated	timeline:		
Year	1:	Complete	analysis	for	heuristic	square-barrier	potential	model,	as	well	as	simple	linear	

models,	including	estimates	of	the	sensitivity	of	the	parity	measurement	to	static	disorder	and	the	
requirements	for	avoiding	a	fatal	amount	of	decoherence	during	the	operation.		(Preliminary	results	
quoted	below.)		Begin	fully	numerical	transfer	matrix	calculations	for	potential	from	solution	of	
Poisson’s	equation.	

Year	2:	Complete	calculations	for	realistic	potential.		Add	detailed	device	modeling.		Consider	
high-frequency	components	of	disorder	as	well	as	transient	behavior	of	system.			

Year	3:	Examine	transition	between	faithful	and	unfaithful	syndromes.		Consider	capabilities	of	
direct	N-qubit	parity	measurements.		(Also,	other	interesting	unforeseen	theoretical	questions	that	
inevitably	emerge	over	the	prior	two	years!)	
	
PRELIMINARY	RESULTS:		Here	we	show	some	back-of-the-envelope	style	calculations	for	a	simplistic	
model	that	shows	the	feasibility	of	the	proposal.		
Consider	a	2DEG	in	a	GaAs/AlGaAs	heterostructure	
with	a	disorder-free	constriction	containing	only	one	
conductance	channel,	assuming	that	the	electrons	
entering	the	channel	from	the	reservoir	have	a	definite	

energy	that	is	tunable	on	the	micro-volt	scale.		A	
typical	length	scale	in	systems	of	lateral	gate-defined	
quantum	dots	is	~100	𝑛𝑚.		Assume	that	the	spins	are	initially	positioned	in	dots	roughly	ℓ = 200	𝑛𝑚	
away	from	the	channel	and	that	turning	up	the	inter-dot	bias	results	in	a	fraction	*+

+
	of	the	charge	

density	tunneling	into	a	dot	ℓ′ = 100	𝑛𝑚	away	from	the	channel,	conditioned	on	the	spin	state.		In	a	
simple-minded	picture	that	ignores	direct	coupling	between	the	bias	voltage	gate	and	the	conductance	

channel,	the	barrier	potential	induced	by	such	a	shift	is	𝑉 𝑥 = *+
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≅ 550	𝜇𝑒𝑉	for	100%	charge	tunneling	and	width	of	𝑎 = 200	𝑛𝑚	to	match	the	full	

width	at	half	maximum	of	the	smooth	potential.		Assume	also	that	the	system	is	perfectly	symmetric.	
	 The	problem	is	now	simply	a	matter	of	transmission	through	zero,	one,	or	two	identical	square	
barriers	(see	Figure	2),	depending	on	the	spin	state.		Although	this	is	a	standard	textbook	problem,	it	is	
useful	for	our	purposes	to	provide	a	brief	summary	of	the	solution	here.		The	state	of	an	electron	is	a	
superposition	of	right-	and	left-moving	plane	waves,	with	different	coefficients	and	wavevectors	in	the	
different	potential	regions.		By	simply	enforcing	the	continuity	conditions	at	the	boundaries	between	
regions,	one	straightforwardly	obtains	the	transmission	coefficient	for	a	single	barrier	as	𝑇4 =

1 + B/6C/
/

0B/C/
sinhH 𝜅𝑎

J4

,	where	𝑘 ≡ 2𝑚𝐸/ℏH	and	𝜅 ≡ 2𝑚(𝑉: − 𝐸)/ℏH.		The	transmission	

coefficient	for	a	double	barrier	can	likewise	be	shown	to	be	𝑇H = 𝑇4H/ 1 + 𝑅4 exp −2𝑖 𝜙4 + 𝑘𝑎 +

Figure 2: Square barrier model. 
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,	where	𝑅4 = 1 − 𝑇4	and	𝜙4 = arctan B/JC/

HBC
tanh	(𝜅𝑎) − 𝑘𝑎.		In	order	to	operate	the	system	

as	a	parity	meter,	we	want	to	have	𝑇4 ≪ 1	and	𝑇H = 1	for	the	same	values	of	𝑉:,	𝑎,	etc.		The	first	
condition	is	to	allow	the	current	measurement	to	distinguish	between	the	two	parity	cases	of	the	spins.		
For	the	parameter	values	we	have	assumed	above,	this	is	satisfied	for	any	𝐸 < 600	𝜇𝑒𝑉.		The	second	
condition	ensures	that	the	states	within	the	even	parity	subspace	are	not	distinguished	by	the	

measurement.		This	requires	that	arctan B/JC/

HBC
tanh	(𝜅𝑎) + 𝑘𝑑 = H^64 1

H
, 𝑛 = 0,1,2, …,	which,	e.g.,	

for	𝐸 = 350	𝜇𝑒𝑉,	is	satisfied	for	any	of	a	set	of	inter-qubit	distances	𝑑 ≅ 50	𝑛𝑚 + 𝑛×125	𝑛𝑚.	
Remarkably,	this	simple	example	of	a	two-qubit	parity	check	can	immediately	be	extended	to	

an	N-qubit	case	by	choosing	the	inter-qubit	distance	such	that	the	second	condition	above	is	satisfied	
for	any	two	of	the	barriers,	with	all	other	barriers	set	to	zero.		This	is	satisfied	so	long	as	𝑘(𝑑 + 𝑎) =
𝑝𝜋, 𝑝 = 1,2,3, …	simultaneously	with	the	conditions	above,	resulting	in	the	condition	B

/JC/

HBC
tanh 𝜅𝑎 =

−cot	(𝑘𝑎),	which	leads	to	𝐸 ≅ 350	𝜇𝑒𝑉	and	the	inter-qubit	distances	quoted	above.		This	ensures	unit	
transmission	for	two	“on”	barriers	separated	by	any	number	of	“off”	barriers.		Since	one	can	
straightforwardly	show	that	the	transmission	of	any	segmented	scattering	potential	can	be	written	in	
terms	of	the	transmission	of	two	subdivisions	of	that	potential	as	𝑇fgf ∝

iji/
4Jkjk/+lm

,	it	follows	that,	under	

the	special	conditions	derived	above,	one	obtains	unit	transmission	through	any	even	number	of	
barriers	since	one	may	recursively	subdivide	the	system	into	resonant	double-barrier	structures	with	
𝑇4 = 𝑇H = 1,	𝑅4 = 𝑅H = 0.		In	the	same	way,	it	also	follows	that	there	is	negligible	transmission	
through	any	odd	number	of	barriers,	since	one	may	subdivide	the	system	into	a	string	of	double-
barriers	for	which	𝑇4 = 1	and	𝑅4 = 0	and	a	single	barrier	for	which	𝑇H ≪ 1.		Thus,	one	obtains	an	N-
qubit	parity	check.	

While	arbitrarily	large	resonant	inter-qubit	distances	exist	in	the	solution	above,	this	of	course	
neglects	the	finite	phase	decoherence	length	of	the	transport	electrons.		However,	this	can	be	many	
microns,	which	is	more	than	enough	for	practical	purposes.		Another	consideration	that	arises	at	large	
distances	is	that	the	resonance	peak	narrows,	requiring	stricter	stability	in	the	parameter	values	in	
order	to	reliably	observe	the	interference	effect.		Specifically,	for	the	particular	parameters	quoted	
above,	the	transmission	near	a	resonance	has	a	Breit-Wigner	lineshape	with	a	characteristic	width	of	
about	25	neV	at	an	interqubit	distance	of	about	a	micron.		Thus,	the	injected	transport	electrons	need	
to	have	energies	controlled	with	a	similar	precision	in	order	to	avoid	distinguishing	between	states	in	
the	even-parity	subspace.		This	becomes	even	more	important	as	one	includes	more	and	more	qubits.	

Although	everything	has	been	couched	in	terms	of	singlet-triplet	spin	qubits	due	to	their	
favorable	coherence	times,	it	is	worth	noting	that	everything	developed	in	this	proposal	will	also	apply	
to	charge	qubits,	hybrid	qubits,	triple-dot	exchange-only	or	resonant	exchange	qubits,	any	other	kind	of	
qubit	that	can	be	temporarily	charge-coupled	to	the	conductance	channel.	
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