2010 F=ma Exam: Problem 23

Kevin S. Huang

First, we study the force on one U-tube:

To find the force the stream of water exerts on the U-tube, we consider a small time interval Δt where a small mass Δm of water enters from the left at the top of the U-tube. Since the water is flowing at velocity v, the length of this segment is $\Delta L=v \Delta t$ so

$$
\Delta m=\rho \Delta V=\rho A \Delta L=\rho A v \Delta t
$$

At the same time, we have Δm of water leaving to the left with velocity $-v$ at the bottom of the U-tube. Thus, in time Δt, water of mass Δm effectively has its velocity changed from v to $-v$. This change in momentum can be attributed to the force from the U-tube on the water,

$$
F=\frac{\Delta p}{\Delta t}=\frac{(\Delta m) v-(\Delta m)(-v)}{\Delta t}=2 \frac{(\Delta m) v}{\Delta t}=2 \rho A v^{2}
$$

By Newton's 3rd law, this is also the force the water exerts on the U-tube. Going to the tube assembly of two U-tubes, since the net force is zero, we balance forces from each side:

$$
\begin{gathered}
F_{1}=2 \rho A v^{2}=2 \rho A^{\prime} v^{\prime 2}=F_{2} \\
v^{\prime}=v \sqrt{\frac{A}{A^{\prime}}}=\sqrt{2} v
\end{gathered}
$$

so the answer is C .

