2020B F=ma Exam: Problem 13

Kevin S. Huang

By the perpendicular-axis theorem, we have

$$
I_{z}=I_{x}+I_{y}=2 I_{y}
$$

Since $I_{z}=\frac{1}{2} M R^{2}$,

$$
I_{y}=\frac{1}{4} M R^{2}
$$

By the parallel-axis theorem,

$$
I=I_{y}+M R^{2}=\frac{5}{4} M R^{2}
$$

Recall the period of oscillation of a physical pendulum is given by

$$
T=2 \pi \sqrt{\frac{I}{m g d}}
$$

where d is the distance from the center of mass to the pivot. In our case,

$$
T=2 \pi \sqrt{\frac{(5 / 4) M R^{2}}{M g R}}=\pi \sqrt{\frac{5 R}{g}}
$$

so the answer is B.

