2018B F=ma Exam: Problem 5

Kevin S. Huang

For constant angular acceleration, we can use our kinematics equation:

$$
\omega_{0}^{2}+2 \alpha \theta=\omega_{f}^{2}
$$

For spinning up to speed,

$$
\begin{gathered}
0+2 \alpha_{1}(10)(2 \pi)=\omega^{2} \\
\alpha_{1}=\frac{\omega^{2}}{40 \pi}
\end{gathered}
$$

For slowing down to rest,

$$
\begin{gathered}
\omega^{2}-2 \alpha_{2}(50)(2 \pi)=0 \\
\alpha_{2}=\frac{\omega^{2}}{200 \pi}
\end{gathered}
$$

Thus,

$$
\frac{\alpha_{1}}{\alpha_{2}}=5
$$

so the answer is D .

